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A method is described by which instantaneous values of the response, the
internal forces and the intensity in beams can be estimated as functions of time. The
individual components of intensity which propagate in each direction and
the components due to shear and moment can also be estimated. The estimates are
provided in real time by digitally "ltering the outputs of an array of sensors. The
digital "lters are designed in the frequency domain using a wave decomposition
approach and reconstructed in the time domain as FIR "lters in this paper. The
design and implementation process is described, numerical simulations of
measurements in the far"eld performed and an experimental implementation
presented. The method is relatively insensitive to sensor miscalibration and
measurement noise compared to other approaches, and yields instantaneous
estimates as well as time averages.

( 2000 Academic Press
1. INTRODUCTION

In this paper a technique for the time domain measurement of structural response
and intensity is described. The technique is based on a wave decomposition and
reconstruction approach. The outputs of an array of sensors are digitally "ltered to
provide estimates of any desired response quantity such as beam rotation, shear
force, bending moment and so on, as well as net intensity and the components of the
intensity which #ow in each direction along the beam. The sensors may be of any
form, such as accelerometers or non-contact devices.

While the approach described is applicable to the estimation of any response
quantity, the emphasis in this paper is placed somewhat on the estimation of
intensity, that is, the #ow of vibrational energy through a structure, and its
components. The measurement of intensity has attracted signi"cant attention in the
last few decades or so. However, practical applications are relatively few, especially
- This work was carried out while the author was at Industrial Research Ltd., P.O. Box 2225,
Auckland, New Zealand.
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compared to the measurement of acoustic intensity, which has become a valuable
tool for the engineer.

To estimate intensity, vibration measurements are taken and can then be
processed in a number of ways. One of the earliest and most common techniques
involves applying "nite di!erence approximations to estimate spatial derivatives of
response from point measurements taken using an array of sensors [1, 2]. This
gives intensity estimates in the time domain. For a beam this requires the
measurement of acceleration (or, equivalently, velocity) at four equally and closely
spaced points. In the far "eld, however, the time-average intensity can be estimated
by time averaging the outputs of just two accelerometers. However, the method is
sensitive to noise and to sensor miscalibration, and especially to any phase
mismatch there may be between the sensors.

Other techniques, such as the cross-spectrum [3] and wave decomposition methods
[4], rely on batch processing and are frequency domain techniques. The responses
are measured over a period of time and later Fourier-analyzed to give estimates of
the total intensity over the measurement period and over a range of frequencies.

In this paper, a technique for the time domain estimation of intensity is described.
An array of sensors is used to measure the vibrational response and the sensor
outputs are then "ltered in the time domain to provide the estimates of response,
internal forces and intensity. This "ltering would normally be done digitally. The
coe$cients of the "lters are designed using a wave decomposition approach in the
frequency domain. The method can be implemented in real time to give estimates of
instantaneous net intensity and the components of intensity in di!erent directions.
It is applicable to transient or random excitation, be it stationary or not. The
estimates can be time-averaged if required, or subsequently Fourier-analyzed to
give frequency domain estimates. The wave decomposition approach used here is
somewhat similar to that used in some active control studies [5, 6].

Here the method is developed with particular reference to bending vibrations in
beams. The approach is systematic, in that a design procedure is described which
allows for the use of any type of sensor, such as accelerometers and strain gauges,
and can be applied to the measurement of intensity in any wave-bearing structural
component. Hybrid sensor arrays, which utilize two or more types of sensor and
which have distinct advantages [4], may be used and the sensors need not be
equally spaced. Furthermore, the estimates are relatively insensitive to
measurement noise and sensor miscalibration.

In the next section some results concerning intensity and wave motion in beams are
reviewed. This is followed by descriptions of the frequency domain design procedure
and its implementation in the time domain. Results of numerical simulations are
presented and an experimental implementation is described. These examples concern
far"eld estimation using two accelerometers. The performance of various sensor
systems is considered elsewhere, as is the application to intensity measurement in plates.

2. ENERGY FLOW AND WAVES IN BEAMS

Consider a thin beam lying along the x-axis as shown in Figure 1. If the e!ects
of shear deformation and rotary inertia can be neglected then the displacement



Figure 1. De"nition of positive shear force and bending moment.
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w(x, t) satis"es
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where EI and o are the bending sti!ness and mass per unit length of the beam and
p(x, t) is the applied force per unit length. A list of symbols is given in Appendix A.
The corresponding shear force q(x, t) and bending moment m(x, t) as de"ned in
Figure 1 are

m"EI
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, q"!EI
L3w
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, (2)

The #ow of energy along the beam, i.e., the structural intensity, is given in terms
of the beam deformation and internal forces by

i(x, t)"!qv!mhQ , v"
Lw
Lt

, hQ "
L2w
LxLt

, (3)

where v and h0 are the transverse and rotational velocities of the beam. The intensity
can be estimated quite straightforwardly if these velocities and internal forces are
known. In practice, however, it is di$cult (or perhaps impossible) to measure the
internal forces. Normally, the beam response is instead measured at a number of
points and the internal forces then inferred from equation (2). One example is that
of the "nite di!erence approach [1], which in general requires four sensors, so that
the shear force (which involves the third spatial derivative) can be estimated. This
paper describes methods of estimating these internal forces and the rotational
velocity using a wave decomposition approach. From these estimates other
quantities, such as the intensity, may then be found.

In many applications, primarily those involving stationary, random excitation or
if the excitation is deterministic and repeatable (especially within the laboratory),
the time-average intensity Si (t)T may be of most interest. This may, of course, be
found by time-averaging the instantaneous intensity. This time average is also
equal to an estimate that can be provided by a "nite di!erence approach [1], in
which the acceleration and velocity are measured at two closely spaced points,
namely
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where D is the sensor spacing and f
c

the centre of the frequency band under
consideration. (Throughout this paper a measured variable such as velocity is
assumed to be equivalent to its time derivative, acceleration. In practice, one can be
found from the other by analogue integration or di!erentiation.)

2.1. WAVES AND ENERGY FLOW

Suppose now that all quantities vary time harmonically as exp (iut). The beam
displacement can be written as

w(x, t)"Re M=(x,u)e*utN. (5)

In this paper, the notation is adopted in which the lower- and upper-case symbols,
e.g., w(t) and=(u), represent the same variable in the time and frequency domains
respectively and the explicit time dependence exp (iut) will normally be suppressed.
In a region in which no applied forces act, the displacement can be expressed as the
sum of wave components:

=(u)"U`
W

(u) e~*kx#U`
N,W

(u)e~kx#U~
W

(u)e*kx#U~
N,W

(u)ekx, (6)

where U$

W
are the complex amplitudes of the positive- and negative-going

propagating waves and U$

N,W
those of the positive- and negative-going near"elds.

The near"eld components decay exponentially in the positive and negative
x directions respectively. In equation (6) k"4Jou2/EI is the wavenumber. In the
presence of damping, k has a (usually small) negative imaginary part so that the
amplitude of a propagating wave component decays gradually in the direction of
propagation. In this paper, it will be assumed that this decay is negligible over
distances of the order of the sensor separations.

The subscript= in equation (6) indicates that it is the displacement=(u) of the
beam that has been decomposed into the wave components U

W
. The wave

amplitudes U
W

are thus referred to as displacement wave amplitudes. However, all
response quantities (velocity, acceleration, shear force, etc.) vary time harmonically
under the passage of a wave. Thus, one could equally de"ne the amplitudes of the
wave components in terms of the amplitude of any such response quantity. For
example, one may equally refer to velocity waves, which have amplitudes
U

V
"iuU

W
, or acceleration waves which have amplitudes U

A
"!u2U

W
: the

superposition of these waves then gives the velocity or acceleration of the
waveguide respectively. Whichever is chosen is purely a matter of convenience.

2.1.1. Intensity and wave components

The shear force at x"0 can be written in terms of wave components as

q(t)"Re MQ(u)e*utN, Q (u)"EIk3(!iU`
W

(u)#U#

N,W
(u)#iU~

W
(u)!U!

N,W
(u)),

(7)
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and hence the shear contribution to the intensity is

!q(t)v(t)"!Re MQ(u)e*utNRe Miu=(u)e*utN. (8)

There is also a moment component to the total intensity.
By decomposing the response variables into wave components, it is clear that the

total intensity has contributions involving the interactions of all these components.
The terms involving U`U` describe the energy #ow associated with the
positive-going wave alone: these terms give shear and moment contributions to the
total intensity which are equal in magnitude, vary at a frequency 2u and are out of
phase, so that their sum is constant, independent of time. Similarly, the intensity
arising from the terms involving U~U~ is constant. The interactions between the
positive- and negative-propagating waves (i.e., the U`U~ terms), however, give no
contribution to the total intensity since their shear and moment contributions are
equal and opposite, so that they always sum to zero. The near"elds individually
(i.e., the U`

N
U`

N
and U~

N
U~

N
terms) also have shear and moment components which

are equal and opposite, giving a zero contribution to the total intensity, as do the
interactions of a propagating component with a near"eld. The near"eld interaction
terms, however (i.e., the U`

N
U~

N
terms) give a contribution which depends on the

relative phases of the wave components. This term can be substantial if both
near"elds have signi"cant amplitudes.

Thus, the total intensity in the beam arises from three terms: the two propagating
waves independently and the interaction of the two near"elds.

2.1.2. Directional components of intensity and propagating waves200power waves11

In the absence of substantial near"elds, the intensity can be divided into positive-
and negative-#owing components, each of which comprises shear and moment
contributions. If the wave amplitudes U$ are known, then these can be found
straightforwardly. However, it is convenient, perhaps, to de"ne &&power waves''
U`

P
(u) and U~

P
(u) (in a manner analogous to displacement and velocity waves) as

waves whose amplitudes are such that 1
2
DU`

P
(u) D2 and 1

2
DU~

P
(u)D2 give the power in

the positive and negative x directions respectively. There are both shear and
moment power waves, their amplitudes being de"ned in terms of displacement and
velocity wave amplitudes by

U$

P,q
"iJEIk3u U$

W
"4JEIo JkU$

V
,

(9)
U$

P,m
"JEIk3u U$

W
"!i 4JEIo JkU$

V
,

2.1.3. Reconstruction in the time domain

In general, more than one frequency component will be present and any response
variable is given by superposition. For example, the positive going displacement
wave amplitude can be written as

/`
w

(t)"F~1MU#

W
(u)N"P

=

~=

U#

W
(u)e*utdu, (10)
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where F~1( ) ) is the inverse Fourier transform. Any response quantity, be it beam
displacement, shear force, positive-going wave amplitude or whatever, can be found
in a similar manner.

3. WAVE DECOMPOSITION, RECONSTRUCTION AND
INTENSITY ESTIMATION

3.1. INTRODUCTION

An array of n sensors is mounted on the beam as shown in Figure 2. It is assumed
that no external excitations act in this region. The aim is to use the sensor outputs
s
j
(t), j"1, 2,2, n, to estimate various response quantities at some location on the

beam. These response quantities may include w(t), q(t), etc., or the intensity i (t). The
sensors may give point measurements of acceleration or velocity, for example, or
may instead be distributed (e.g., strain gauges of non-negligible length). The array
may contain sensors of di!erent kinds, such an array being referred to as a hybrid
sensor array.

The means by which this response estimation may be performed is described in
this section. The sensor outputs are "rst used to estimate the wave amplitudes in the
measurement region. By reconstruction, any response quantity can be expressed as
a sum of contributions from these wave amplitudes. Time domain estimates are
made by digital "ltering, i.e., by the convolution of the sensor outputs with the
coe$cients of various digital "lters. The implemented "lters have frequency
responses which approximate idealized designs, the design being performed in the
frequency domain. In this section, this design approach is described and time
domain implementation discussed with reference to some example sensor systems.

3.2. WAVE DECOMPOSITION IN THE FREQUENCY DOMAIN

Assume that all quantities vary time-harmonically. Let the displacement wave
amplitudes at x"0 be given by

U
W

(u)"[U#

W
U~

W
U`

N,W
U~

N,W
]T, (11)

where it is assumed that both propagating and near"eld components are present. In
many applications one or more components will have negligible amplitude*for
Figure 2. Sensor array.
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example, in the far"eld both near"eld terms can be neglected. In such situations, the
appropriate component(s) can then be ignored.

The sensor outputs S
j
(u) are related to U by

S (u)"F(u)U (u), (12)
where

S (u)"[S
1

S
2
2S

n
]T. (13)

In equation (12), F is a matrix, the jth row of which depends on the type of the jth
sensor and its location with respect to the origin. For example, for an accelerometer
located at x

j

S
j
(u)"!u2 [exp (!ikx

j
) exp (ikx

j
) exp(!kx

j
)]U

W
(u), (14)

while for a strain gauge of length d centered at x
j
,

S
j
(u)"!zk2 C

sin kd
kd

e~*kxj
sin kd

kd
e*kxj

sinh kd
kd

e~kxj
sinh kd

kd
e~kxjDU

W
(u),

(15)

where z is the distance from the strain gauge to the neutral axis. The wave
amplitudes are therefore given by

U
W

(u)"F~1(u)S(u), (16)

where the inverse is assumed to exist. Normally, for a given sensor array
con"guration, F will be singular at certain frequencies which depend on the sensor
spacing, and hence the lowest such frequency limits the frequency range in which
such a con"guration is usable. For the case of an overdetermined measurement
array, in which there are more sensors than wave components, the inverse is
assumed to be evaluated in the least-squares sense, i.e.,

F~1"[FHF]~1FH, (17)

where the superscript H denotes the complex conjugate transpose (the Hermitian).
Overdetermined arrays can prove much less sensitive to noise, miscalibration and
other measurement errors.

Any response quantity P(u) can be related to the wave amplitudes by an
expression of the form

P(u)"H
P,U

(u)U
W

(u), (18)

where HP,U is a row vector which relates the wave amplitudes to the response
variable P(u). For example, for the displacement, slope, bending moment and shear
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force at x"0 the appropriate vectors are given by

H
W,U

(u)"[1 1 1 1]

HH,U(u)"k[!i i !1 1N
(19)

H
M,U

(u)"!EIk2[1 1 !1 !1]

H
Q,U

(u)"!EIk3 [i !i !1 1].

Time derivatives follow from multiplication by the corresponding power of (iu)
(e.g., H

V,U
"iuH

W,U
). Consequently, the frequency responses relating sensor

measurements to the response variable P are

P(u)"H
P
(u)S (u)" +

j"1,n

H
P,j

(u)S
j
(u), H

P
"H

P,U
F~1, (20)

where H
P

is a row vector of frequency responses which relate the sensor outputs to
the response variable P(u). Thus, any response quantity can be found by
appropriately "ltering the sensor outputs, i.e., by multiplying the sensor outputs by
appropriate frequency responses and summing.

3.3. RECONSTRUCTION: TIME DOMAIN RESPONSE ESTIMATION

In general, the time response will be a superposition of many frequency
components and is given by an inverse Fourier transform as in equation (10). Any
response quantity p(t) can thus be found by evaluating the inverse transform of
equation (20). Since the inverse transform of a product is equal to the convolution
of the individual inverse transforms, then

p(t)"h
p
(t) * s(t)" +

j/1,n

h
p,j

(t) * s
j
(t), (21)

where * denotes convolution and where h
p,j

(t) is the inverse Fourier transform of
H

P,j
(u), that is, the impulse response of a "lter whose frequency response is H

P,j
(u).

Also, h
p
(t) is the corresponding row vector of impulse responses.

One issue that arises is that the required "lters, i.e., those with impulse responses
h
p,j

(t), are typically non-causal, so that h
p,j

(t) is non-zero for t(0. Such
non-causality means that the response p(t) at some time is determined not only by
past and present sensor measurements, but also by future ones. This behaviour is
not surprising, since estimates are made from sensor measurements taken at
various locations. It takes some time for waves to propagate from one location to
another, so exact estimation of wave amplitudes, for example, requires knowledge
of the future output of the downstream sensor. In practice, these e!ects are
unimportant for response and intensity estimation when &&real-time'' performance is
not crucial*in e!ect a small delay can be incorporated into the "ltering process
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before a response estimate is produced. These time delays have more profound
consequences for applications such as active control.

Practical implementations will be predominantly digital. The sensor outputs are
sampled at the sampling frequency f

s
, being "rst passed through anti-aliasing,

low-pass "lters with a cut-o! frequency of somewhat less than the Nyquist
frequency f

n
"f

s
/2. This, therefore, de"nes a maximum frequency of interest and

often, as in the example in section 3.4 below, a maximum transducer spacing. The
sensor outputs are sampled, yielding s

j,m
at time step m. The desired frequency

responses H
P

are de"ned at discrete, equally spaced frequencies. The variable p
m

at
time step m is then given by digitally "ltering s

j,m
with a digital "lter whose

frequency response approximates the ideal, H
P
. There are two main forms for such

digital "lters, namely "nite impulse response (FIR) and in"nite impulse response
(IIR) "lters, and there exist a number of ways in which the coe$cients of such "lters
can be found [7]. In an FIR "lter implementation, equation (21) becomes

p
m
" +

j/1,n
G +
k/0,K

h
p,j,k

s
j,m~kH, (22)

where the response p
m

at time step m depends on present and previous values of the
sensor measurements s

j
and on the K#1 "lter coe$cients h

p,j,k
for each of the

n sensors. Only FIR "lters are used in the numerical and experimental studies
below. In an IIR "lter, p depends also on previous values of p. Such "lters normally
give a better approximation to the desired frequency response for a given "lter
order but can be unstable.

The problem of causality can be overcome by allowing a "nite delay of r time
steps, which is equivalent to multiplying H by exp (!iur/ f

s
). A causal "lter will

then produce an estimate of the value of p
m

at time step m#r. In the examples
below only small values of r are required so that the time delays involved are
unimportant, especially if time averages are desired.

One method of designing an FIR approximation to the frequency responses in
equation (20) is as follows. The time delay of r steps is introduced and a (2r#1)
coe$cient FIR "lter designed to approximate H(u) exp (!iru/ f

s
). The coe$cients

h
k
, k"022r, are then evaluated so that the implemented frequency response

HK "+
k/0,2r

h
k
exp (!iuk/ f

s
) is the best approximation to H in the least-squares

sense, i.e., so as to minimize the sum over frequency of ( DH(u)!HK (u) D2). If it is felt
necessary, a weight p(u) can be introduced and (p (u) DH(u)!HK (u) D2) minimized.

3.3.1. Intensity estimation

The instantaneous, net intensity can be estimated from equation (3) once
estimates of the instantaneous velocity, shear force, angular velocity and bending
moment at a point have been made. This also directly yields estimates of the
components due to shear and bending independently.

Estimates can also be made of the instantaneous components of intensity in
both the positive and negative x directions. These can be found by estimating
the contributions to the velocity, shear force, etc., from each wave component



Figure 3. Two accelerometer array.
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(e.g., U$

W
), hence "nding the corresponding component of the intensity.

Alternatively, the power wave amplitudes U$

P,q
and U$

P,m
themselves can be

estimated and the power associated with each found as described in section 2.1.2.
Time averaging can also be performed straightforwardly, for example by passing

the instantaneous estimate of intensity through a moving-average (MA) "lter. This
inevitably introduces additional delays, which are typically very much larger than
those arising from non-causality.

3.4. EXAMPLE: TWO ACCELEROMETERS IN THE FAR FIELD

In the far "eld there are only two wave components, the near"elds being
negligible, and hence two sensors are su$cient to determine the response. Figure
3 shows a system comprising two accelerometers a distance D apart, such a system
being perhaps the simplest and most common system for structural intensity
estimation. The aim is to estimate the response (e.g., velocity, shear force, net
intensity) at x"0.

The sensor measurements S
1,2

are here taken to be the measured velocitiess
v
1,2

(t) at positions x
1,2

"$D/2 and hence S
1,2

(u)"<
1,2

(u)"iu=
1,2

(u). The
matrix F is given by

F"iuC
exp (ikD/2)

exp (!ikD/2)
exp (!ikD/2)
exp (ikD/2) D (23)

while its inverse, which relates displacement wave amplitudes to the measured
velocities becomes

F~1"!

1
2u sin kD C

exp (ikD/2)
!exp (!ikD/2)

!exp (!ikD/2)
exp (ikD/2) D. (24)

Using the "rst two columns of equation (19) (since near"elds are neglected) and
equation (24) the frequency responses relating the velocities and internal forces at
-These may be found, for example, by analogue integration of measured accelerations. Velocities are
taken here for convenience in presenting numerical results.
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the array centre to the measured velocities are found to be

H
V
(u)"

1
2 cos (kD/2)

[1 1],

HH (u)"
(kD/2)

D sin (kD/2)
[!1 1]

HM(u)"
i JEIo

2 cos (kD/2)
[1 1]

H.(u)"
i JEIo (kD/2)
D sin (kD/2)

[1 !1] (25)

and thus involve the sums and di!erences of the two measured velocities. Note that
some of the frequency responses become in"nite when kD"n, so that there is some
maximum allowable separation for measurement within a given frequency
range*the sensors must be less than half the shortest wavelength apart.

The frequency responses relating the velocity wave amplitudes to the measured
velocities are given by

HU`
V
"HU

V
,1!HU

V
,2 ,

HU~
V
"HU

V
,1#HU

V
,2 ,

HU
V
,1"

1
4 cos (kD/2)

[1 1], HU
V
,2"

i
4 sin (kD/2)

[1 !1], (26)

while the power wave amplitudes are found from

HU`
P,q
"HU

P,q
,1!HU

P,q
,2 , HU~

P,q
"HU

P,q
,1#HU

P,q
,2 ,

HU`
P,m
"HU

P,m
,1!HU

P,m
,2 , HU~

P,m
"HU

P,m
,1#HU

P,m
,2 ,

HU
P,q

,1"A
4JEIo

2JD B
JkD/2

cos (kD/2)
[1 1] HU

P,q
,2"A

4JEIo

2JD B
i JkD/2
sin (kD/2)

[1 !1]

HU
P,m

,1"!iHU
P,q

,1 , HU
P,m

,2"!iHU
P,q

,2 . (27)

Block diagram representations of these two approaches to intensity estimation are
shown in Figure 4.

FIR approximations to the ideal frequency responses of equations (25}27) can be
found using the least-squares technique outlined above. Some examples are shown



Figure 4. Block diagram representations: (a) estimation of internal forces, velocities and intensity
and (b) estimation of power wave amplitudes.
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in Figure 5, in which various ideal frequency responses H and their implemented
approximations HK are shown for various "lter lengths. Figure 6 shows the actual
"lter coe$cients. The frequency responses were de"ned at 512 equally spaced
frequencies up to the Nyquist frequency and the "lter coe$cients found using
uniform weighting over the whole frequency range.

The real frequency responses H
V
, HH0 , HU

P,q
,1 and HU

P,m
,2 are approximated very

well with very few terms. For these the FIR "lters are symmetric, in that
h
r~j

"h
r`j

, and the higher order "lter coe$cients decrease asymptotically as
Dr$j D~2.

Signi"cantly more terms are required to approximate the pure imaginary
frequency responses H

M
, H

Q
, HU

P,q
,2 and HU

P,m
,1 . This is due in part to the fact that

h
k
are constrained to be real, and hence HK must be zero at zero frequency and at the

Nyquist frequency, introducing discontinuities in the frequency responses at those



Figure 5. Frequency responses of FIR approximations: (a) H
V
(u)"1/(2 cos(kD/2)); =, ideal; . . . ,

r"1; - - -, r"3; - . - ., r"7. (b) H. (u)"iJEIo (kD/2)/(D sin (kD/2)); *, ideal; . . . , r"3; - - -, r"7;
- . - . , r"11.
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frequencies. These "lters are also antisymmetric, so that h
r~j

"!h
r`j

.
Furthermore, the higher order "lter coe$cients decrease asymptotically only as
Dr$j D~1. Finally, in these cases the total "lter length must be large enough to
capture information about the low-frequency components, and hence the
approximation is poor for frequencies below f

N
/(2r#1) and for frequencies above

2r f
N
/(2r#1). However, it should be noted that in practice the low- and

high-frequency components of the signals will often be "ltered out (for example by



Figure 6. FIR "lter coe$cients, r"15:#h
v ,

;]h
q
.
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the anti-aliasing "lters and by AC coupling) and that this will substantially
ameliorate the e!ects of the poor approximation in these frequency ranges. This is
demonstrated in the numerical simulations of section 4 and the practical
implementation of section 5.

It is worth emphasizing that the phases of the implemented "lters H) are exact,
since the coe$cients are either symmetric or antisymmetric about the "lter centre.
This is particularly relevant to the estimation of net intensity, especially in a wave
"eld which is fairly reverberant, where estimation is known to be very sensitive to
any phase mismatching.

3.5. EFFECTS OF NOISE AND MISCALIBRATION

In this section, some general comments are made regarding the e!ects of
measurement noise and miscalibration. The actual e!ects in a particular
implementation depend on the sensor con"guration, the frequency content of the
vibrations and so on. Particular reference is made to the two-transducer system
discussed above and the "nite di!erence estimate provided by the same system. In
the latter case, the spacing of the sensors must be restricted to be much less than the
wavelength to avoid a large bias error. Numerical examples are presented in section
4 below.

If the sensor measurements are contaminated with independent random noise of
zero mean (e.g., vL

1,2
(t)"v

1,2
(t)#e

1,2
(t) with E[e

1,2
]"0), then the estimates of the

wave amplitudes, internal forces, etc., will also be contaminated. In both the wave
decomposition and "nite di!erence approaches the error in the estimated intensity
is of zero mean and its expected mean square value is of the order of E[e2

1
]#E[e2

2
] .
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Numerical results indicate that the "nite di!erence approach is somewhat more
sensitive to noise.

Suppose that there exists some magnitude miscalibration between the sensors, so
that the output of sensor 2, for example, is vL

2
(t)"(1#k)l

2
(t), where k is some

(small) constant. The estimate of intensity is then biased by the same amount k, and
this depends little on which approach is adopted.

The wave decomposition approach, however, is in general very much less
sensitive to phase miscalibration (i.e., if vL

2
(t)"exp (ik)v

2
(t), with k some (small)

constant). The reason behind this is that estimation of intensity involves
the di!erence between the two sensor outputs. In the "nite di!erence methods,
the sensors are constrained to be close to avoid errors from the "nite dif-
ference approximation. Even small relative phase errors then produce large
relative errors in this di!erence. In the wave decomposition approach, on the
other hand, the sensor separation can be very much larger and the term
exp (!ikD) is introduced into equation (24), from which the wave amplitudes are
estimated. A phase di!erence of the order of kD thus exists between the sensor
outputs and the relative e!ect of phase miscalibration becomes correspondingly
less.

3.6. SENSOR SYSTEMS

A further advantage of the wave decomposition approach is that it systematically
allows for sensor systems of any form. For example, the separation need not be
uniform, the system may be overdetermined and the sensors may be of di!erent
types (e.g., a mixture of accelerometers and strain gauges). Such hybrid systems
have been shown to have signi"cantly better performance than arrays of the same
type of transducer [4] in many applications. The performances of various sensor
systems are compared elsewhere.

4. NUMERICAL SIMULATIONS: FARFIELD ESTIMATION USING TWO POINT
MEASUREMENTS

In this section the results of some numerical simulations are described. The
intentions are to investigate the accuracy of the wave decomposition estimates,
including estimates made in the presence of noise and miscalibration, and to
compare the accuracy with that of the "nite di!erence method.

The "rst stage is to simulate the response of a beam to excitation. This is done
using a spectral approach [8] and yields time series giving any desired response
quantity. These time series are typically very long. Brie#y, suppose that a point
force f (t), de"ned at discrete times nq, acts at x

f
. Its spectrum F(u) is found by

taking the FFT. The component at frequency u introduces propagating and
near"eld acceleration waves of amplitudes

U$

A
"

ikF
4o

, U$

N,A
"

kF
4o

(28)
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at x"x
f
. (It is convenient numerically to work in terms of acceleration wave

amplitudes because of problems associated with the model as uP0, where
force components produce displacements and velocities that tend to in"nity.)
These waves give a contribution to the acceleration spectrum at a location x

r
*x

f
given by

A(u)"U#

A
exp (!ik (x

r
!x

f
))#U#

N,A
exp (!k (x

r
!x

f
)) (29)

with a similar expression in terms of U!

A
and U!

N,A
if x

r
)x

f
. The total response

spectrum is found by summing wave contributions from all applied forces and the
response a(t) then found by evaluating the inverse FFT. Other response quantities
can be found in a similar way because their relationships to the wave amplitudes
are known. These may be quantities such as shear force and velocity at some
location, and hence the actual intensity at that location can be calculated by
multiplication. Similarly, time series giving transducer outputs can be found (e.g.,
velocities at the sensor locations) and these used as inputs to the time domain
intensity estimator.

Next, FIR "lters are designed to approximate the ideal "lters, these depending, of
course, on the particular sensor array being considered, the type and number of
sensors and the physical locations. The ideal frequency response is de"ned at
a number of frequencies, the &&non-causal'' delay r chosen and a 2r#1 term FIR
"lter found using the least-squares method or otherwise.

The "nal stage is to implement the estimator in &&real time'' by passing the
simulated time series through the FIR "lter. Noise and miscalibration can be added
to the sensor outputs if required.

In all the simulations described below the time series were 215"32 768 points in
length. Beam parameters are normalized by taking EI"o"1, positions x on the
beam are normalized with respect to the wavelength j

n
at the Nyquist frequency

and estimates are made of response quantities at x"0. Other response quantities
are also found: these are the velocities at x"$0)15j

n
, which are used as inputs to

the wave decomposition "lters, the acceleration at x"!0)02j
n
and the velocity at

x"0)02j
n
, the last two being used to provide estimates of the intensity using the

di!erence approximation of equation (4). FIR "lters are designed by a least-squares
"t to the ideal frequency responses at 512 uniformly spaced frequencies up to the
Nyquist frequency with uniform weighting. A time delay of r"7 is used, giving
FIR "lters with 15 coe$cients.

4.1. TRANSIENT EXCITATION

Two transient, burst-random excitations are assumed to act on the beam. The
"rst, applied at x"!10j

n
is non-zero only for time steps such that

1000)t
n
)1250, while the second is applied at x"8j

n
and non-zero only for

time steps such that 1350)t
n
)1600. The waves produced by these excit-

ations propagate towards the origin where the response quantities are calculated.
Both forces are random, Gaussian noise with unity variance which is band-
pass "ltered using a 21-term Parks}McClellan FIR "lter designed using the



Figure 7. Time histories of (a) force at x"!10j
n
, (b) force at x"8j

n
and (c) velocity at x"0
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Matlab &&remez11 function. The "lter has cut-o! frequencies at 0)15 f
n

and 0)85 f
n

respectively.
Figure 7 shows the applied forces and the velocity at x"0 as functions of time.

There is a noticeable time delay before the waves excited by each force arrive at the
response point, with the higher and lower frequency components arriving earlier
and later respectively.

Figure 8 shows the actual shear force at x"0 and that predicted using the wave
decomposition and reconstruction technique. In the latter case, the time axis is
shifted by r"7 steps, this being the group delay introduced by the "lters. For "lters
of the length used here the two are virtually identical, noticeable di!erences being
primarily at the beginning and end of the bursts. Estimates of the bending moment
at x"0 are of comparable accuracy, while those of the velocity and slope are
substantially more accurate. The standard deviations of the errors for this
particular simulation are given in Table 1.

Once the beam displacement and slope and the internal forces have been
estimated, they can be multiplied to yield estimates of the intensity. In Figure 9 the
actual intensity at x"0 and the wave decomposition estimate found from the sum
of the shear and bending components, time-shifted by r steps once again are shown.
The individual components of intensity are shown in Figure 10. The intensity is
clearly positive or negative during those time periods during which waves arrive
from the forces at x(0 and x'0 respectively. Again the agreement is excellent.



Figure 8. Time histories of (a) actual and (b) (time-shifted) estimated shear force at x"0.

TABLE 1

Normalized standard deviation p
p
"J(pL !p)2 /Jp2 of response variables pL ,

normalized with respect to actual variable p, for signal bursts in section 4.1

Variable p
p

(%)

v 0)172
h0 0)043
m 7)97
q 7)38
i 4)21
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The individual components of intensity (Figure 10) are similar in magnitude to the
total intensity and clearly #uctuate more rapidly with time.

Figure 9 also shows the "nite di!erence expression of equation (4), whose time
average equals that of the actual intensity. This illustrates one problem with this
"nite di!erence approximation: the intensity is estimated by "nding the mean of
a quantity which is both positive and negative, and whose amplitude is typically an
order of magnitude greater than the actual intensity, thus making it prone to
measurement errors, phase inaccuracies and so on.

The components of intensity associated with the positive- and negative-going
waves individually can be found using the power wave "lters of equation (27). The
estimates of these directional components of intensity are shown in Figure 11. They
can be clearly identi"ed as being caused by the individual force bursts.

4.2. TIME AVERAGES: NOISE AND MIS-CALIBRATION

In this section only the random, band-limited force at x"!10j
n

is applied.
Now, however, it is random, stationary and continuous. The intensity is therefore



Figure 9. Time histories of intensity at x"0: (a) actual; (b) (time-shifted) wave decomposition
estimate; (c) "nite di!erence approximation, equation (4).

Figure 10. Time histories of (a) actual net intensity at x"0 and (time-shifted) wave decomposition
estimates of (b) moment and (c) shear component.
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Figure 11. Time histories of (a) actual net intensity at x"0 and (time-shifted) wave decomposition,
power wave estimates of (b) positive-going component and (c) negative-going component.
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also random. In this section time averages, found by taking moving averages over
various numbers of points, will be investigated.

Typical time averages, taken over 101 and 301 points, are shown in Figure 12.
Since the discrete time, wave decomposition estimates of intensity agree well with
the true intensity so, too, do the time averages. Time averages of the "nite di!erence
approximation, equation (4), however, show substantially larger #uctuations
together with a consistent bias error. This bias error is known to be due to the "nite
di!erence approximation (and is broadly dependent on sin kD/kD) and increases as
the sensor spacing increases.

Figure 13 illustrates the e!ects of measurement noise and miscalibration on the
long-term time averages (taken over all 32 768 points). It is assumed that the
measurement from the "rst sensor is accurate while the output of the second sensor
is vL

2
(t)"(1#k

m
) exp (ik

p
) (1#e

2
(t))v

2
(t). Here, k

m
and k

P
represent the e!ects of

relative miscalibration on the magnitudes and phases of the sensors respectively,
while e

2
(t) is measurement noise, assumed to be Gaussian, of zero mean and of

standard deviation pe . Measurement noise does not substantially a!ect the
long-term means, the main di!erence being that the variance about the mean
becomes larger with increasing noise. Noise a!ects the "nite di!erence average
somewhat more. (The bias in the "nite di!erence estimate is clear). The e!ects of
magnitude miscalibration are also not profound and a!ect the estimates provided



Figure 12. Time-average net intensity taken over (a) 101 and (b) 301 time steps:*, exact; . . . . , wave
decomposition; - - - -, "nite di!erence approximation.
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by each method to a similar degree. The wave decomposition estimate, however, is
very much less sensitive to phase miscalibration, where miscalibration of even a few
degrees can produce extremely large errors in "nite di!erence estimates. This
sensitivity can be related to the fact that the allowable sensor spacing for the wave
decomposition approach is so much larger: broadly, the spacing must be less than
half a wavelength, whereas for the "nite di!erence approach it must be small
compared to a wavelength. Increasing the spacing reduces the sensitivity to phase
miscalibration in the "nite di!erence approach, but at the expense of increasing the
bias.
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5. IMPLEMENTATION AND EXPERIMENTAL MEASUREMENTS

5.1. EXPERIMENTAL SET-UP

Experimental measurements were performed on a steel beam to demonstrate the
applicability of the technique described above. The beam had nominal dimensions
of 6000]50]6 mm and was suspended by piano wire at 1500 mm intervals along
its length. The ends of the beam were embedded in sand to approximate anechoic
terminations. The beam was excited near its centre by a non-contacting
coil-and-magnet exciter, the applied force being measured with a Bruel and Kjaer
Figure 13. E!ects on long-term time average of (a) noise on sensor 2, (b) magnitude miscalibration
of sensor 2 and (c) phase miscalibration of sensor 2: *, wave decomposition; - - - - "nite di!erence
approximation.



Figure 13. Continued.

Figure 14. Schematic of experimental apparatus*locations of measurement points.
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type 8200 force transducer. This experimental apparatus has been used
extensively in vibrational energy #ow measurements [4], and its behaviour is well
documented.

The response of the beam was measured at the required points using an array of
"ve PCB 353B65 accelerometers, in conjunction with a Hewlett}Packard
HP3566A 8 Channel Dynamic Signal Analyser. All measurements were stored as
time records, with subsequent processing performed using MATLAB software. The
results therefore simulate the behaviour of a digital real-time (or real time plus
delay) vibrational energy #ow measurement system, since they are not subject to
processing speed limitations. In practice, the required processing speed will be
dependent on the sampling rate, the desired response quantities and on the number
of terms in the digital "lters that are necessary to approximate the desired
frequency responses to the required accuracy. This will depend on the frequency
band of interest, the types of sensors used and their placement and the signal
conditioning that is used prior to digitization. For example, integration or "ltering
(after anti-alias "ltering) may be performed using either analogue or digital
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techniques. If these operations are to be performed digitally they may increase the
length of the "lters required, consequently increasing the processing time.

The input power to the beam was calculated from the measurements of input
force and (digitally integrated) driving point acceleration. The vibrational energy
#ow was calculated, using the techniques described in this paper, from two
relatively widely spaced measurements of acceleration in each arm of the beam (at
points B and C, D and E*see Figure 14). The time average of the energy #ow was
compared with the time-averaged input power to investigate the accuracy of the
energy #ow measurement on average.

5.2. DIGITIZATION, PRE-PROCESSING AND DIGITAL FILTER DESIGN

As discussed in section 3, four "lters are required to estimate the instantaneous
components of intensity in the far "eld of a beam under #exural vibration. In the
case where velocities are the measured variables, the required frequency responses
are given by equations (25). If, however, other variables are measured the "lters are
required to have di!erent frequency responses. In these experimental measurements
two cases are considered. In the "rst of these the measurements of acceleration
are digitized directly, while in the second analogue integration is used to
provide velocity measurements.

The frequency range of interest will determine the minimum rate at which the
sensor outputs must be sampled. Analogue low-pass "lters must be used prior to
digitization to avoid aliasing. If real-time processing is required it will usually be
advantageous to minimize the sampling rate, thereby maximizing the processing
time available between samples. In addition, bandpass "ltering may also be
required, as noted in section 3.4. The optimum spacing of the sensors is related
to the frequency range of interest. As the sensor spacing becomes very small relative
to a wavelength, or approaches a half-wavelength, the calculation of some of
the required variables (linear and rotational velocity, bending moment and shear
force) become extremely sensitive to noise and other measurement errors. Poor
conditioning at high frequencies can be avoided by using a sensor spacing that gives
acceptable conditioning up to the cut-o! frequency of the anti-aliasing "lters, or
lower if additional "ltering, either digital or analogue, is applied. There will also be
a low-frequency limit below which the conditioning becomes unacceptable. The
presence of noise at these low frequencies can contribute signi"cantly to errors in
the measurement, and thus their attenuation by high-pass "ltering may be
advisable. This "ltering may be performed using either analogue or digital
techniques. However, provided that the inclusion of bandpass "ltering in the
digital stage does not cause an unacceptable increase in the processing
requirements, digital "ltering can provide signi"cant advantages over its analogue
equivalent, including the ability to tailor the "lter characteristics for individual
applications.

In the experiments described below the measured data was bandpass "ltered
digitally to attenuate components below 0)15 f

n
and above 0)85 f

n
. This was

achieved using the same bandpass "lters used for the numerical simulations. The



Figure 15. Time histories of wave decomposition intensity estimates, time harmonic excitation at
310 Hz, acceleration measurements: . . . . , total intensity; *, shear component; - - - - , moment
component.
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"ltering reduces signal levels in the frequency ranges where the measurement
system is poorly conditioned.

The same FIR "lters as those used in the numerical simulations above were used
to process the measured velocity signals (i.e., "lters with r"7), except that the
weight function was set to zero outside the pass band of interest. When acceleration
signals are used, "lters of this length give somewhat reduced accuracy, due to the
emphasis acceleration signals place on the high-frequency components.

5.3. EXPERIMENTAL RESULTS

A sampling rate of 2048 Hz was used for each of the two measurement schemes
(acceleration inputs and velocity inputs), with a sensor spacing of 90 mm,
corresponding to 0)76 rad at 100 Hz and 2)27 rad at 900 Hz. In each case, the beam
was subjected "rst to sinusoidal excitation at selected frequencies, and then to
random excitation in the frequency band 0}800 Hz.

Figures 15 and 16 show examples of the instantaneous estimates of the shear and
moment components of intensity and the total intensity in the right arm of the
beam under sinusoidal excitation at 310 Hz, as derived from acceleration and
velocity inputs respectively. In each case, it is apparent that the shear and moment
components are of comparable magnitude, opposite phase, and vary between zero
and a maximum value, as would be expected. Figures 17 and 18 show the
instantaneous intensity under random excitation for the two measurement
schemes. The instantaneous intensity is occasionally negative due to the fact that
the end of the beam is not perfectly anechoic. For the case of time harmonic



Figure 16. Time histories of wave decomposition intensity estimates, time harmonic excitation at
310 Hz, velocity measurements: . . . . , total intensity;*, shear component; - - - - , moment component.

Figure 17. Time histories of wave decomposition intensity estimates, random excitation,
acceleration measurements: . . . . , total intensity; *, shear component; - - - - , moment component.
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excitation, the total instantaneous intensity shows some small #uctuations due to
"ltering approximations.

It should be noted that the individual components of intensity vary at twice
the excitation frequency, and thus, for excitation frequencies greater than half
the Nyquist frequency, some visual aliasing will occur. Thus, while there is su$cient
information to de"ne the components unambiguously, care should be exercised in
the interpretation of &&as plotted'' data.



Figure 18. Time histories of wave decomposition intensity estimates, random excitation, velocity
measurements: . . . . , total intensity; *, shear component; - - - -, moment component.
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In all cases the agreement between time-averaged input power and time-
averaged total energy #ow (i.e., the time-average of the sum of the
individual components of instantaneous intensity in each arm of the beam) was
within 10%.

6. CONCLUDING REMARKS

In this paper a technique was described by which various response quantities
may be estimated. The approach is based on wave decomposition and
reconstruction, design being carried out in the frequency domain and
implemented in the time domain using digital "lters. The case of bending
vibrations in beams was considered, although the technique is applicable
to any wave-bearing structure. Emphasis was placed on the estimation of intensity,
its shear and moment components and the components which propagate in
di!erent directions. Numerical simulations and experimental demonstration were
described.

The particular advantages of the method include the fact that it is systematic,
allowing sensor systems of arbitrary types, and that the wave decomposition
approach enables sensors to be optimally spaced, reducing sensitivity to noise and
miscalibration.
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APPENDIX: NOMENCLATURE

The lower-case symbol (e.g., p(t)) is used to represent a variable in the time
domain, while the upper case, P(u), represents the same variable in the frequency
domain.
a acceleration
EI bending sti!ness
f frequency, force
f
n

Nyquist frequency
f
s

sampling frequency
h "lter impulse response, FIR "lter coe$cient
H "lter frequency response
i intensity
k wavenumber
m bending moment
n time step
p arbitrary variable, distributed load
q shear force
r "lter delay
s sensor output
t time
v velocity
w displacement
x position along beam

D sensor separation
h beam rotation
j wavelength
o mass per unit length
p "lter weight function
q sampling time, 1/f

s
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/ wave amplitude
u frequency

Subscripts

j sensor number
k "lter coe$cient number
m time step number
n Nyquist frequency
N near "eld
s sampling frequency
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